If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2-6.2=0
a = 2; b = 0; c = -6.2;
Δ = b2-4ac
Δ = 02-4·2·(-6.2)
Δ = 49.6
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-\sqrt{49.6}}{2*2}=\frac{0-\sqrt{49.6}}{4} =-\frac{\sqrt{}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+\sqrt{49.6}}{2*2}=\frac{0+\sqrt{49.6}}{4} =\frac{\sqrt{}}{4} $
| 5x=41/2 | | T=-20+36e | | 2078=x+.1x | | T=-1+36e^-9 | | 4-h=1 | | 7x+25=-88 | | t=3+4 | | 5x+6x^2=40 | | 5-8w=-11 | | 3x-10=1x-2 | | 5x^2+13x=-1 | | 100-2.5=10x | | 3(t-4)+6=3t(2t-6) | | 9x^2-(31x)=51 | | 2w+1(w)=28 | | 4x-6+6=15 | | 2f+3=6f= | | (1/2)(4x-16)+32=x+16 | | 1/2(4x-16)+32=x+16 | | (5u-14)^2=(2u+4)^2 | | 3*1.05^x=24 | | 9f-4ff=7 | | 2÷3x-5=5 | | (x+3)(x-0.333)(x-2)=0 | | X+(x-7)+2x=93 | | 4x+18=21+7x | | x/8=-496 | | 53.64=1/2(8.6x^2) | | -15.x=225 | | x-59=702 | | -3(y+3)=-6y-15 | | 7d^2-5d+12=0 |